Integrative surfaceome profiling identifies immunotherapeutic targets in osteosarcoma and preclinical testing of BT1769, an MT1-MMP-targeted Bicycle® toxin conjugate, in osteosarcoma by the Pediatric Preclinical Testing Consortium (PPTC)

Yifei Wang¹, Wendong Zhang¹, Zhongting Zhang¹, Xiangjun Tian², Rossana N. Lazcano Segura³, Pooja Hingorani¹, Michael Roth¹, Jonathan Gill¹, Douglas Harrison¹, Zhaohui Xu¹, Jing Wang², Alexander Lazar³, Eric J. Earley⁴, Stephen W. Erickson⁴, Tara Gelb⁵, Philip Huxley⁶, Johanna Lahdenranta⁵, Gemma Mudd⁶, Raushan Kurmasheva⁷, Peter Houghton⁷, Malcolm A. Smith⁸, Edward A. Kolb⁹, and Richard Gorlick¹

¹Department of Pediatrics, Children’s Cancer Hospital, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
²Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
³Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
⁴RTI International, Research Triangle Park, NC, USA
⁵Bicycle Therapeutics, 4 Hartwell Place, Lexington, MA, USA
⁶Bicycle Therapeutics, Babraham Research Campus, Cambridge, UK
⁷Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
⁸Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
⁹Division of Pediatric Hematology/Oncology, A. I. duPont Hospital for Children, Wilmington, DE, USA
I have no financial relationships to disclose.
Current developments in the immunotherapeutic strategies show potential in the treatment of solid tumors.

In osteosarcoma, surface proteins such as GD2 and HER2 have been identified as cell surface antigens of interest, but therapeutic mAb such as dinutuximab and trastuzumab were inadequate to generate robust clinical responses.

Immunotherapies such as immunoconjugates or CAR-T cell therapy have not been sufficiently studied in OS.

Bicycle Toxin Conjugates have low molecular weight (~4 kDa) compared to antibody drug conjugates (~150 kDa) - rapid tumor penetration and short half-life.
Identifying New Targets in Osteosarcoma

- Hypothesis: surface proteins such as those related to bone differentiation or other consistent osteosarcoma features may be targeted therapeutically.
Identification of candidate OS cell surface antigens: approach

Surface protein extraction and mass spectrometry identification in a panel of osteosarcoma cell lines and PDX models. 825 surface proteins were identified

ProteomicsDB database: surface proteins overexpressed in osteosarcoma vs normal human tissue. 141 overexpressed surface proteins were identified

Surface proteins confirmed to be expressed in the OS cell lines and PDX models, and overexpressed in OS compared to normal tissues. 64 surface proteins were identified

209 overexpressed surface genes were identified by RNA-seq data for osteosarcomas (TARGET) compared with normal human tissues (GTEX)

126 surface protein targets were selected by literature review

11 surface targets were enriched at both the protein and mRNA levels

4 candidate targets (MT1-MMP, MRC2, CD276, and LRRC15) were identified

WB, FCM, and IHC with OS cell lines, PDX tissues and patient samples validated the overexpression of MT1-MMP, MRC2, and CD276 in osteosarcomas

MT1-MMP targeted bicycle toxin conjugate (BTC) BT1769 were tested in preclinical OS PDX models
825 surface proteins are identified in OS cell lines/PDX models by mass spectrometry.
Integrative proteomic and transcriptomic analysis identifies overexpressed cell-surface proteins in OS

- Mass spectrometry: 825 surface proteins that were highly expressed in OS cell lines/PDX were identified by quantitative proteomics mass spectrometry.

- RNAseq: 209 OS specific plasma membrane-associated genes were identified.

- MS public database: 141 proteins overexpressed in OS were identified.

- The overlapped targets among these 3 datasets were filtered by current 126 ADC/CAR-T targets.

- 4 surface proteins (MT1-MMP, MRC2, CD276, and LRRC15) were found to be enriched in OS by all RNA-seq and mass spectrometry datasets. There are immunoconjugates and/or Bicycle toxin conjugates targeting these 4 surface proteins.
The expression of CD276, MRC2 and MT1-MMP in OS vs Normal tissues

MT1-MMP

CD276

MRC2

LRRC15
Validation of the expression of MT1-MMP, MRC2 and CD276 in OS cell lines and PDXs
Validation of the expression of the candidate surface proteins - IHC with patient and PDX TMA
Preclinical test of MT1-MMP targeted BT1769

OS33 OS17 OS2

OS1 OS31 OS9

FPKM

RNAseq - MT1-MMP

Control

BT1769
Post-treatment recurrent tumor showed a lower MT1-MMP expression level.
Preclinical test of MT1-MMP targeted BT1769

Osteosarcoma PDX models

- **OS33**
- **OS17**
- **OS2**

Ewing sarcoma PDX models

- **ES1**
- **OS1**
- **OS31**
- **OS9**
- **TC-71**

DO NOT POST
Integrated proteomic and transcriptomic osteosarcoma surfaceome profiling identified high-confidence osteosarcoma cell-surface antigens (MT1-MMP, CD276, MRC2, and LRRC15) as therapeutic targets.

- ADC targeting LRRC15 is active against osteosarcoma PDXs (Hingorani, et al. Mol Cancer Ther 2021)
- ADC targeting CD276 is active against osteosarcoma PDXs (Kendsersky, et al. Clinical Cancer Research, 2021)

MT1-MMP’s high expression and BT1769’s preclinical activity support the potential of MT1-MMP-targeted Bicycles in osteosarcoma.
Acknowledgements

MD Anderson Cancer Center
Richard Gorlick, MD
Jonathan Gill, MD
Michael Roth, MD
Douglas Harrison, MD
Pooja Hingorani, MD
Ellen Zhang
Matt Zhang
Zhaohui Xu
Xiangjun Tian, PhD
Jing Wang, PhD
Rossana N. Lazcano Segura, MD
Alexander Lazar, MD

Greehey Children’s Cancer Research Institute, UTHSCSA
Raushan Kurmasheva, PhD
Peter Houghton, PhD

RTI International
Eric J. Earley
Stephen W. Erickson

National Cancer Institute
Malcolm A. Smith, MD, PhD

Bicycle Therapeutics
Tara Gelb
Philip Huxley
Johanna Lahdenranta
Gemma Mudd

Funding