

The CLK/DYRK inhibitor SM09419 shows potent efficacy across a broad panel of pediatric preclinical xenograft models: A report from the Pediatric Preclinical In Vivo Testing Consortium (PIVOT)

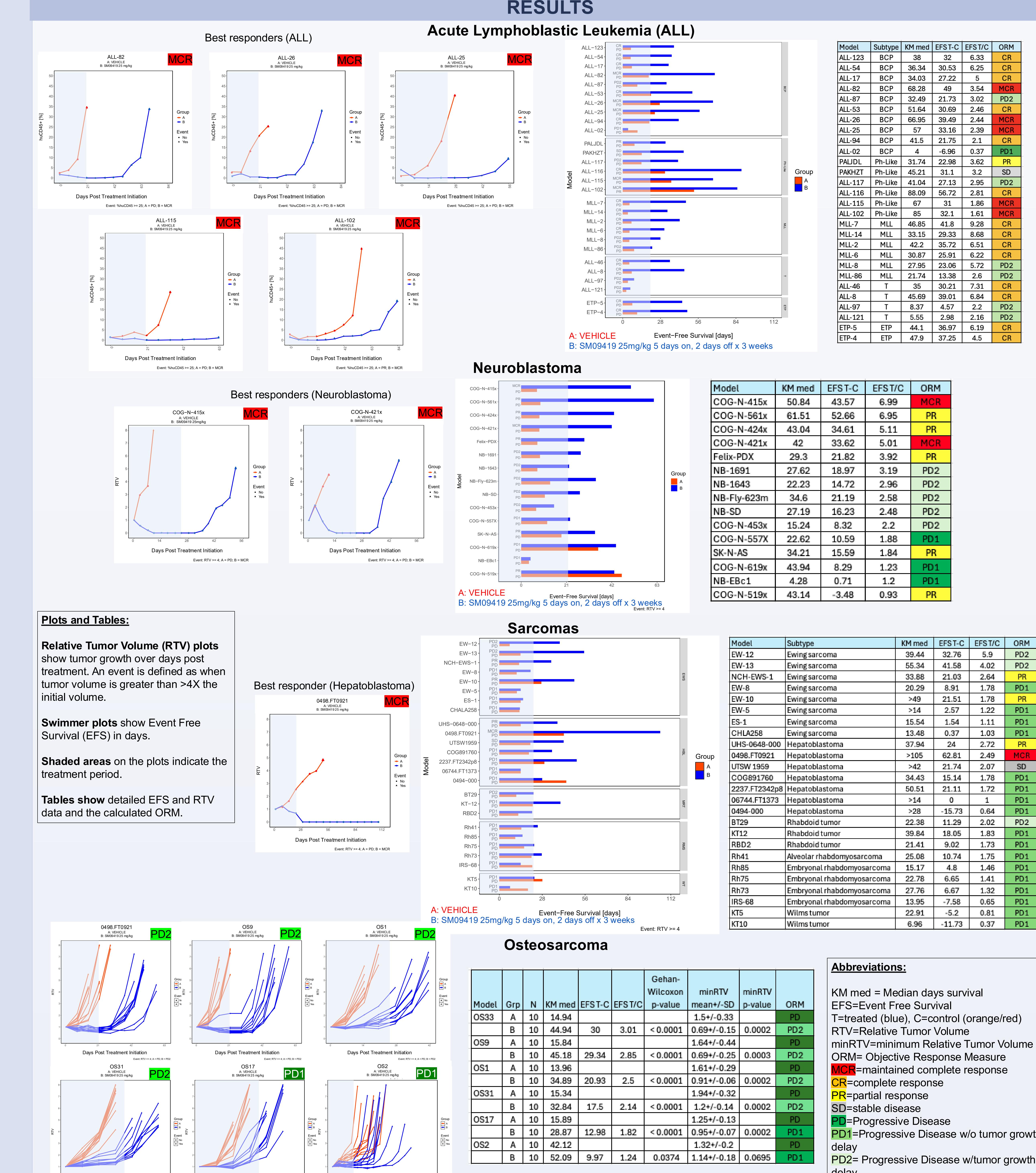
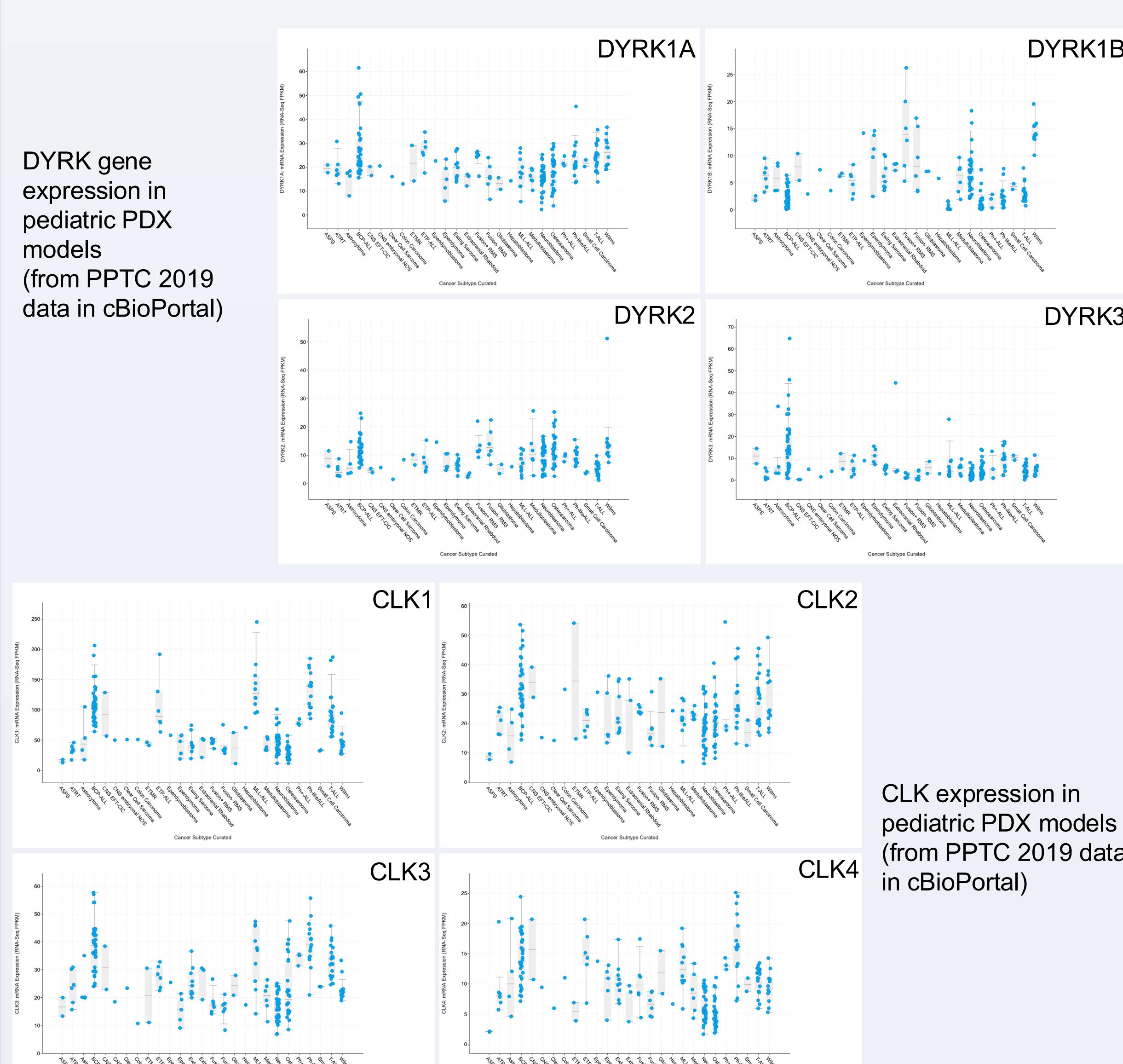
Richard B. Lock¹, Raushan Kurmasheva², Kathryn Evans¹, David Groff³, Ben Watts⁴, Kateryna Krytska³, Christopher M. Smith¹, Faith N. Key³, Daniella Cofini¹, Miguel Agoncilio¹, Steve Neuhauser⁵, Tim Stearns⁵, Emily L. Jocoy⁵, Jee Young Kwon⁵, Jeffrey H. Chuang⁶, Beverly A Teicher⁷, Richard Gorlick⁶, Yael P. Mosse³, John M. Maris³, Peter Houghton², Carol J. Bult⁵, Malcolm A. Smith⁷.

¹Children's Cancer Institute, UNSW Centre for Childhood Cancer Research, Sydney, Australia, ²Univ. Texas Health Sciences Center San Antonio, San Antonio, TX, ³Children's Hospital of Philadelphia, Philadelphia, PA, ⁴Memorial Sloan Kettering Cancer Center, New York NY, ⁵The Jackson Laboratory, Bar Harbor, ME, ⁶MD Anderson Cancer Center, Houston, TX, ⁷National Cancer Institute, Bethesda, MD

<https://preclinicalpivot.org>

ABSTRACT

SM09419 is an experimental small-molecule pan-inhibitor targeting CDC-like (CLK) and dual-specificity tyrosine phosphorylation-regulated (DYRK) kinases, which play a key role in RNA splicing and other cancer associated processes. SM09419 exhibited promising activity in preclinical models of *TP53* and *FLT3*-mutated acute myeloid leukemia (AML), and the related compound cirtuvinostat (SM08502) has previously been tested as monotherapy and in combination with other anti-cancer agents in patients with advanced solid tumors (NCT03355066 and NCT05084859) and is in clinical testing for adults with AML (NCT06484062). To evaluate the role of CLK and DYRK kinase inhibition in pediatric cancers, SM09419 was tested against panels of pediatric solid tumor and leukemia patient-derived xenografts (PDXs).



STUDY METHODS

Dosing: SM09419 was provided by Biosplice Therapeutics, Inc. and administered orally (PO) at 25 mg/kg daily for 5 days per week x 3 weeks followed by up to 12-weeks of post treatment observation for the acute lymphoblastic leukemia, neuroblastoma, sarcoma, hepatoblastoma, and osteosarcoma models.

Tolerability: Tolerability was assessed in groups of 3 non-tumor bearing immune-deficient mice (NSG, CB17 SCID) at 100%, 75% and 50% of the recommended dose of 25 mg/kg.

Efficacy Testing: For efficacy testing, a single mouse trial (SMT) design (one vehicle control, one drug treated mouse per PDX) was used for ALL (n=30 PDXs), NB (n=14), HB (n=7), Ewing sarcoma (ES, n=8), rhabdomyosarcoma (RMS, n=5), Wilms tumor (WT, n=2) and malignant rhabdoid tumors (MRT, n=3). For the osteosarcoma (OS, n=6) models a conventional study design of 10 mice per treatment group (vehicle or drug) was employed.

Treatment Response: Standard PIVOT methods were used to assess event-free survival (EFS T/C = ratio of median EFS for treated versus control animals). Stringent objective response measures (ORMs) modeled after the clinical setting were also used to evaluate activity (Houghton et al., *Pediatr Blood Cancer*, 2007).

SUMMARY

SM09419 was well tolerated at all dose levels with <20% weight loss observed, irrespective of the mouse strain used.

SM09419 showed objective responses (e.g., PR, CR, or MCR) in:

- 20 of 28 evaluable ALL models
- 7 of 14 Neuroblastoma (NB) models
- 2 of 7 Hepatoblastoma (HB) models
- 2 of 8 Ewing sarcoma (ES) models
- 0 of 2 Wilms tumor (WT) models
- 0 of 5 Rhabdomyosarcoma (RMS) models
- 0 of 3 Malignant Rhabdoid tumor (MRT) models
- 0 of 6 Osteosarcoma (OS) models

EFS T/C values ranged from:

- 0.37-9.28 in ALL models
- 0.93-6.99 in Neuroblastoma models
- 1.0-2.72 in Hepatoblastoma models
- 1.03-5.9 in Ewing sarcoma models
- 0.37-0.81 in Wilms tumor models
- 0.65-1.83 in Rhabdomyosarcoma models
- 1.73-2.02 in Malignant rhabdoid tumor models
- 1.24-3.01 Osteosarcoma models

CONCLUSION

SM09419 exhibited broad antitumor activity across several pediatric cancers (e.g., ALL and NB), with activity also observed for ES and HB. Lower activity was seen in the RMS and OS models which may require longer treatment. The promising results for selected cancer types support further evaluation of CLK/DYRK as therapeutic targets for these cancers. Future research directions for these cancers include identifying biomarkers that predict sensitivity to CLK/DYRK inhibition as well as efforts to identify effective combinations with targeted and/or standard-of-care drugs.

REFERENCES

Houghton, Pediatric Blood Cancer 2007; 49:928-940

MORE INFORMATION

Corresponding author: Richard Lock, Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Australia
rlock@ccia.org.au

Funding: 3U01CA199221, 3U01CA199287, 3U01CA199297, 3U01CA199288, U24CA263963, 5U01CA199000

We gratefully acknowledge the contributions of Drs. Carine Bossard, Matthew Jarvis, and John Hill from Biosplice Therapeutics, Inc. to this study.